Solver App for Android and iPhone
Strategies for Number Puzzles of all kinds
Page Index
Solvers
Puzzles
Basic Strategies
Tough Strategies
Diabolical Strategies
Extreme Strategies
Depreciated Strategies
Str8ts
Other

Pattern Overlay Method



Invented by Myth Jellies, this strategy looks at the way candidates of a specific digit N can be distributed in the remaining spaces. Every time a digit is placed it removes other spaces in the rest of the row, column and box, quickly narrowing down the possibilities. It is a strategy you don't want to apply too early in the puzzle since the number of overlays might be too large, but in the middle and end games it is fairly easy to apply.

The First Pattern Overlay
The First Pattern Overlay

The first diagram shows a possible pattern or template. It is in fact the first such pattern given an empty board and placement from top left to bottom right. On an empty board there are 46,656 different patterns which is why we use this when most cells are filled. Every placement of N reduces the number of patterns by a factor of 9.
Just the 3s shown
Just the 3s shown
In this relatively simple example all the 3s are shown. We can start from the top block which contains just two threes, so the total number of overlays will be two.
The two possible patterns
The two possible patterns
I have coloured the two patterns here. Try and find another pattern which picks a 3 for every row, columns and box. It should be impossible.
The Overlay
The Overlay
It helps to label the patterns "a", "b", "c" and so on against the candidate number. In this case we are only looking at number 3 so "a" and "b" are appropriate. Now here is the magic of POM. Those cells with "ab" must contain that number - we have found solutions. Those cells with no "a" or "b" (marked with a dash) cannot contain a 3.

The solver will return one of two types of elimination sets, which it calls "Rule 1" and "Rule 2"

Rule 1 considers each number in isolation. When looking for all the possible patterns for X it is possible that X may not appear in any pattern at all. If found, the solver reports and quits.

Rule 2 looks at all the patterns for all numbers 1 to 9. Within in each number all patterns may want to occupy certain cells - like a bottleneck. If that is the case then those cells are not available for other patterns used by other numbers. This is more cumbersome for a human to calculate, admittedly, but it works very well for the solver and we get a lot of this type. Patterns are pruned down and then Rule 1 is executed to find the first X where cells not used by X. Only the first X is reported - there may be other eliminations from numbers higher than X but it would be too confusing to report the total overlap.

The logic of POM ensure that there will always be at least one pattern for every X despite all these operations - unless the puzzle itself is faulty.



Comments

Your Name/Handle

Email Address - required for confirmation (it will not be displayed here)

Your comment or question

Please enter the
letters you see:
arrow
Enter these letters Remember me


Please keep your comments relevant to this article.
Email addresses are never displayed, but they are required to confirm your comments. When you enter your name and email address, you'll be sent a link to confirm your comment. Line breaks and paragraphs are automatically converted - no need to use <p> or <br> tags.
Talk Subject Comments
Comments here pertain to corrections to the text, not the subject itself
Article created on 12-April-2008. Views: 46162
This page was last modified on 9-January-2014.
All text is copyright and for personal use only but may be reproduced with the permission of the author.
Copyright Andrew Stuart @ Syndicated Puzzles Inc, 2014