Looking for Hidden Pairs is a great way to open up the board. This approach can remove a cluster of candidates from two cells and leave behind simple pairs which are the building blocks of more complex elimination strategies.

Looking at the top of this moderate puzzle, we see that 6 and 7 have been found in the first two boxes. Along with the 6 and 7 in column 7, this pins the placement of 6 and 7 in the third box to A8 and A9. It still appears that there are a great number of other candidates in A8 and A9, which is true up to a point. However, these extra candidates 'hide' the true values for these cells. We have deduced that 6 and 7 must go in A8 and A9 and therefore we can clear off all the alternatives. This doesn't mean we know which way round the 6 and 7 will go, but we can make 6 and 7 a Naked Pair in those cells and see where it leads us.

This is a more interesting and complex set of Hidden Pairs. Three occur simultaneously. In the blue rectangle, [2,4] form a Pair on D3 and E3, clearing off 3, 5, 6 and 7. The red cells indicate two Hidden Pairs based on [3,7], which form a neat corner of three cells. [3,7] is unique to two cells in row E and two cells in column 7. The yellow highlighted cells can be removed.

We can extend Hidden Pairs to Hidden Triples or even Hidden Quads. A Triple will consist of three pairs of numbers lying in three cells in the same row, column or box, such as [4,8,9], [4,8,9] and [4,8,9]. However, in just the same manner as Naked Triples, we don't need exactly three pairs of numbers in three cells for the rules to apply. Only that

This tough puzzle has two Hidden Triples: the first, marked in red, is in row A. Cell A4 contains [2,5,6], A7 has [2,6] and cell A9 contains [2,5]. These three cells are the last remaining cells in row A which can contain 2, 5 and 6, so those numbers must go in those cells. Therefore we can remove the other candidates.

Now that we've removed those candidates from the red cells, we can see in column 9 that [4,7,8] is unique to cells B9, C9 and F9. By the same logic we can clear off other candidates in those cells.

(The solver will not choose the second example as Naked Triples get there first)

Here is the one example of a Hidden Quad I found in a set of 18,000 Sudoku puzzles. Four numbers [3/4/5/7] on four cells are hidden by just two 6s in column 7. Barely qualifies as 'hidden', but it is legitimate. Note how none of the cells need to have all four numbers, as long as only four cells contain all four numbers and are intermingled.

Hidden Quads almost always only occur in rows, columns and boxes where there are no clues or solved cells, so you can be forgiven for skipping them outside those circumstances.

Klaus Brenner in Germany has found a number of excellent Hidden Quads, and I include one here to show they do exist.

The Hidden Quad is {1,4,6,9} in Box 5 and exists only in the four cells [D4,D6,F4,F6]. Therefore other candidates (red text on yellow background) can be removed.

This very special puzzle also produces a perfectly formed Empty Rectangle later on.

We don't consider higher orders of Hidden candidates because there are only 9 cells in a unit. So if we were to suppose a "Hidden Quin" with five candidates there would automatically be a complementary Hidden Quad since 5 + 4 = 9. Same point arises with Naked sets. It may be viable to look for such beasts in 12x12 or 16x16 Sudokus.

## Comments

Comments Talk## Tuesday 5-Mar-2019

## ... by: Liz

If "hidden" means that each member of a set of n candidates only occurs in a set of n squares in a unit, then if there are N already solved squares in that unit, does it not follow that the remaining 9 minus N minus n candidates must form a *naked* set? Since, otherwise, one of the n candidates would have to occur in at least one of those remaining squares?Is it not generally easier to find a naked set than a hidden one, even if the naked set is a 5, 6, or even 7-tuple?

In your first example above, I would have noticed first that 4,7,8,9 form a naked quad, making a triple out of 2,5,6. Even in your last example, 2,3,5,7,8 form a fairly obvious naked quint.

Because of this I'm having trouble understanding why "hidden candidates" is even discussed as a separate strategy.

Or are there cases where a hidden set does not have a complementary naked set? (which depends, perhaps, on exactly how "hidden" is defined)

## Friday 24-Nov-2017

## ... by: pyorokun7

Never mind, it does detect it, but only after elminating a lot of candidates in the column with several advanced techniques.Also, by the time it detects it, one of the 6 is already eliminated

Hidden Quad 3/4/5/7 in Col 7, on cells [E7,F7,G7,H7]

- removes 6 from H7

(the other 6 was removed by the APE that eliminated the 4 in J7, creating the Hidden Quad itself)

So probably it should be updated, or maybe should use another example.

By the way, is there a reason why the last row is J, instead of I?

## Friday 24-Nov-2017

## ... by: pyorokun7

http://www.sudokuwiki.org/sudoku.htm?bd=650087024000649050040025000570438061000501000310902085000890010000213000130750098Your solver (I guess after an update) no longer detects this Hidden Quad in Col 7; after the Naked Pair in Box 3 of 3/7, it jumps to X-Wing

## Sunday 13-Mar-2016

## ... by: KDot93

***In response to YBB (below)***: I believe a "hidden quad" is just a "naked quad" with an interfering number - in the case of the example, the possibility of a 6 in cells G7 and H7 made that quad into a "hidden quad". However for your question, since there is no interfering number, A7,B7,C7 and C9 form a "naked quad" instead (as well as B9 and C8 forming a "naked pair").PS: I'm new to advanced sudoku-ing/this website, so if that's an incorrect explanation/there is a direct "reply" function, please let me know! (somehow...). Or perhaps if Andrew could make an "answer/reply" function so he doesn't have to respond to all the comments, that would be great!

PPS: Really awesome website!

## Thursday 25-Feb-2016

## ... by: YBB

With reference to first example on Hidden Quads, why is 1,6,8,9 in the top right box not a hidden quad?## Saturday 23-Aug-2014

## ... by: Didi

Sorry, I have to correct my last comment a bit:If you can use a single or pair for pointing, it's regardless of whether it's hidden or naked. The thing that I wanted to point out is that if you've found "some stuff" inside a block ("claiming", "pointing", "naked/hidden pair"), then you always should keep your focus where you currently are, to watch out for more of that "stuff" that could be found now, either beeing human, or a computer solving the riddle.

P.S.: Your site here is brilliant, thank's a lot!

## Friday 22-Aug-2014

## ... by: Didi

I think it should be mentioned that a hidden pair leads always, after processing, to a naked pair. Although this is a platitude, there's reason for being aware of this change. In some cases the resulting naked pair can be used as a pointing pair.The fact is also interesting to programmers: If you want efficient computer code, this check can be done immediately and more effortlessly, rather than checking again with an extra-algorithm.

## Thursday 17-Apr-2014

## ... by: Doc

In your hidden pair example in the blue boxes what determines it is 2,4 and not 2,6 and in the red boxes why 3,7 not 3,9.Likewise, there are other 9's in column 7 so only 3/7 makes a pair in that column

## Monday 23-Sep-2013

## ... by: Peter Heichelheim

There is a clue which will help someone in spotting hidden triples. If there is a hidden triple it must be in a unit with two or less solved squares.## Monday 9-Sep-2013

## ... by: Y.Sato

Your example of sudoku is very interesting, but the logic to find a hidden triple is hard to me.In the example of Hidden Triples on this page,

I found two candidates of Hidden Triples in column 9 according to my rule.

A: { {4, 7, 8}, {4, 7, 8}, {4, 8} }

B: { {4, 8, 9}, {4, 8, 9}, {4, 8} }

Your solution is the candidate A.

Why is the candidate B not a solution ?

Would you please teach me the reason ?

Best regards,

Yoshihiro Sato

## Monday 28-Jan-2013

## ... by: ad.joe

Hello Andrew, this time a naming suggestion to differentiate between basic and advanced techniques:"ONE DIMENSIONAL":

As can easy be seen in example 2 of the Hidden Pairs, it only deals with column 7!

So it's like this:

Basic strategies deal with only on row, one column OR one box, therefore are working ONEDIMENSIONAL! While advanced techniques/strategies are working moredimensional: in more than one row AND column AND work.

And I've never read such a sentence "anywhere", what do YOU say?

Besides a hidden subset is easier to be understood (for most people) as an x-wing, it can still hard to be found, becaus one has to look up the occurences (2 for instance) of the numbers in this one dimension.

## Tuesday 1-Jan-2013

## ... by: m&mjabb

hidden triples example - this wouldn't be a triple but in row 9 why couldn't the 4,7,8,9....4,7,8....4789....48 be used as quad? is it because of the 9 in row J?(beginner sudoku player)

## Tuesday 18-Sep-2012

## ... by: amarabavani@gmail.com

Fantastic page. Your explanations are simple and the working user-friendly. keep up the good work and good luck.## Tuesday 10-Jan-2012

## ... by: adivandhya

i tried to download the website so that i can read it while im offline, nw it says i am a bot..wht should i do to get the access back?## Saturday 12-Nov-2011

## ... by: Ritesh

Firstly , thanks 4 Sharing the site ...Give me more examples to understand hidden Quads

## Sunday 11-Sep-2011

## ... by: Chuck Watson

Great site! I have learned to solve much harder puzzles by studying this site.What I wanted to point out is your last example of a hidden quad actually also shows a naked quintuple. To me the naked quintuple is easier to see.

## Wednesday 20-Jul-2011

## ... by: Joseph Badillo

Very nice site, very helpfull.Question regarding making a mistake:

Your almost to the end and you find out that a 6 and a 9 does have been repeated. Are there short cuts you can take to find out where you made a mistake other than starting over?

## Saturday 19-Feb-2011

## ... by: Walsh

Bill,From that example you can see that the 4 has to be part of the hidden triple since it has to be in one of those two squares. The three and one cannot be used because it has possiblilities in other places in that block. A Hidden triple will have a sequence of numbers that are in only three boxes in a row, column, or block.

## Monday 31-Jan-2011

## ... by: Bill

I am looking at the hidden triple example. Your results is 4/8/9; however, why can't the hidden triple be 1/8/9 or 1/3/9?## Saturday 30-Oct-2010

## ... by: David Harkness

Lloyd, this strategy allows you to eliminate the other numbers from the cells containing the hidden pair/triple/etc. It does not allow you to remove the numbers in the pair/triple from other cells.The key is that the three numbers involved in the triple must occur in only three cells. In your example, 124 is not a triple because 2 is a possible in 5 cells. Each number must be a possible in at most 3 cells (2 for a hidden pair, 4 for a hidden quad, etc).

Naked Pairs is where you eliminate the numbers in the pair from other cells.

Andrew, the section on triples mentions "three pairs" of numbers, but often one of the cells will contain all three numbers. Is "pairs" here simply a copy/paste error from the section above, or does it have some other significance? I understand that sometimes the numbers appear in pairs in 3 cells, but that's not necessary.

Also, the first paragraph has an extra word: "hidden in in the squares".

## Saturday 5-Jun-2010

## ... by: Lloyd Pape

Hi, I get confused. I have a row: 24,14,1245,257,2567,3,1267,8,9 ,..I would like to group cols 1,2 and 3 with a tripple, 24,14,124,delete the 5 in col 3,...then, delete the 2 incol4, the2 in col 5 and the 12 in col 7,..so that I end up with a tripple ,1,2,4, another tripple 5,6,7 and 3,8,9,...does this work,..if so , are the tripples naked or hidden,...thanks for your info to date,....regards,...lloyd## Thursday 6-May-2010

## ... by: Sarah

Hi Andrew,Great site. I'm terrible at spotting hidden triples. Any tips, hints on becoming better at this?

Thanks!

Sarah

## Monday 8-Mar-2010

## ... by: csvidyasagar

You have given an excellent example of Hidden Pairs, Hidden Triples and Hidden Quads. But the example you quoted of Mr Klaus Brenner of Hidden Quad, I suppose is NOT Correct. For hidden pairs, the digits must appear only in two cells like you correctly shown as 58 in your example. The digits 5, 8 do not appear in any other cell of the box. In Hidden Triples of digits 4, 8, 9 lie in only three cells and none of them appear in any other cell in the box. Similarly in Hidden Quads of your example, the digits 3,5,6,7 appear only in four cells in the Box and do not appear in any other cell of Column 8. But it is not so in the example cited of Mr Klaus Brenner. May be I am wrong or my understanindg of Hiddens is wrong. So can you explain how Hidden Quads are there in the example of which you have high lighted some cells.## Monday 15-Feb-2010

## ... by: robin smith

Hi, What a great site . it's so helpful when I really get stuck with a puzzle. One minor point . . would it not be possible to have the original numbers in the puzzle in a different colour so it is more easy to spot the ones that get added as the solution unfolds.Just a thought.

But it's stil a great site.

Robin Smith

## Tuesday 1-Sep-2009

## ... by: Chuck Bruno

Hello Andrew,I have written several times but I must repeat "This is a great site". That being said, I have a question:

How do you determine what the difficulty level should be for a given stratagy?

I personally find that Pointing Pairs, Box/Line Reduction, X-Wing, and Unique Rectangles, are much easier to spot than Hidden Triples. When I get stumped on a Sudoku, I import it into your Solver, uncheck stratagies I don't usually look for, and step through it. In most cases, I find that I simply overlooked something silly. In some cases however, the Solver finds a hidden double or triple. Because these can't be turned off like the more difficult stratagies, I can't force the Solver around it to see if one of the other stratagies that I normally use, would allow the puzzle to be solved without using the naked double or triple.

In summary, I would like to be able to selectively turn off the "easier" stratagies just as can be done with the tougher ones.

Thanks for your time,

Chuck Bruno

## Friday 8-May-2009

## ... by: Roger

Don't understand "from a library of 18,000"